

THE FUTURE IS NOT WHAT IT USED TO BE

Joel Anderson

Chair BCHP Initiative

Senior Vice President

Mississippi Valley Gas Company

THE PROBLEM:

*1-Energy shortages could nag the U.S. economy for a number of years

Alan Greenspan

Chairman Federal Reserve

- Price of all energy increasing
- More frequent brown outs
- Problem with power quality

Reliability Concerns

"Local power outages doubled between 1996 and 1998 due to strong U.S. demand for electricity and deregulation" -- Wall Street Journal, March 16, 2000

Areas with Capacity Margins < 10 percent

THE PROBLEM

*2 The U.S. with only 2% of the world's population produces 25% of the greenhouse gases.

- World condemns Bush as he pulls out of global warming treaty
- Air pollution threatens The Great Smoky Mountains National Park. Also the parks in Alaska, Texas, New York, Arizona, Florida and Wyoming

National Parks Conservation Association

- Added cost to clean power plant emissions
- -Deaths each year attributed to pollution: 50,000 to 100,000

A sample of greenhouse gases affected by human activities						
	CO ₂	CH ₄	N ₂ O	CFC-11	HCFC-22	CF ₄
Pre-industrial concentration	-280ppmv	-700ppbv	-275ppbv	zero	zero	zero
Concentration in 1994	358 ppmv	1720 ppbv	312ppbv	268pptv	110pptv	72pptv
Rate of concentration change	1.5 ppmv/yr	10ppbv/yr	0.8ppbv/yr	Opptv/yr	5 pptv/yr	1.2pptv/yr
Atmospheric lifetime (years)	50-200	12	120	50	12	50,000

Source: IPCC, 1995_a

THE PROBLEM

*3 Indoor Air Quality is getting worse.

- Asthma cases have increased 50%
- Sinusitis is also on the increase. Cost to U.S. estimated to be over \$6 billion per year
- Air conditioning ducts are a great place to grow mold and bacteria
- "Fred" the dust mite, is alive and well and has lots of friends

Optimum Relative Humidity for Minimizing Adverse Health Effects

Mold & Mildew

Relative Humidity

Optimum Relative Humidity for Minimizing Adverse Health Effects

Bacteria

Relative Humidity

Optimum Relative Humidity for Minimizing Adverse Health Effects

Mites

Relative Humidity

Annual Ventilation AC Hours -

Atlanta, GA

Space Conditions: 75° F, 50% RH

Efficiency

Benefits of the DER Approach

30% Natural Resource Savings

% ENERGY USE vs STATUS QUO

Efficiency of Central Power

Generation

Delivered Efficiency of BCHP

o "Advice is what we ask for when we already know the answer but wish we didn't."

OUR GOAL

Make nation's energy generation delivery system the cleanest and most efficient, reliable and affordable in the world.

DOE OFFICE OF DISTRIBUTED ENERGY RESOURCES

Technology Under Development

To Serve 2002 - 2010 Market Needs

Next Generation Gas Turbine Vision

2000: First generation advanced gas turbine @ 4,500 kW

2010: Broad product lines of cost reduced advanced gas turbines

Distributed Energy Resources Engine Vision

2000: Natural gas engines 30% efficient and moderate NOx emissions

www.efficient.&.5ppm NOx emissions

Microturbine Vision

2000: First generation microturbines ~ 22-25 % efficient & \$1,000 / kW

2010: Advanced microturbines ~ 35% efficient equipment (LHV) & \$500 / kW equipment price

Fuel Cell Vision

2000: First generation fuel cells \$3,500 / kW & low temperature recoverable energy

2010: Advanced fuel cells ~ \$1,000 / kW equipment price & high temperature recoverable energy

LiBr Absorption Chiller Vision

2000: Good technologies, but limited penetration

Desiccant Dehumidifier Vision

2000: Niche market equipment for high value humidity control applications

Ammonia/Water Absorption Technology Vision

2010: Absorption - based chillers, heat pumps and BCHP systems adopted by large segments of customers

BCHP Vision

Packaged System Integration

2000: Individually optimized products

2010: BCHP optimized systems

Regional Application Centers

REGIONAL APPLICATION CENTER APPROACH

MISSION:

DEVELOP TECHNOLOGY APPLICATION KNOWLEDGE AND THE EDUCATIONAL INFRASTRUCTURE NECESSARY TO:

- Reduce Any Perceived Risks
- Foster CHP as a Viable Option
 - * Technical and Financial
 - * Energy and Environmental

FOCUS: - **Education**

- Information
- Project Assistance

PARTNERSHIP BETWEEN:

-University of Illinois at Chicago

Energy Resources Center---UIC/ERC

-Gas Technology Institute---GTI

SPONSORSHIP:

- **-DOE Office of Power Technologies**
- -Office of Distributed Energy Resources

PROGRAM SUPPORT

-Oak Ridge National Laboratory---ORNL

CHP Integration Test Building

UNIVERSITY OF MARYLAND

2010: Efficient building www. energy2001.ee.doe.gov

BCHP BENEFITS TO SOCIETY

America can benefit from BCHP because:

- o 30% or better improvement in primary energy efficiency
- 45% or better reduction in CO₂ emissions
- Improved IAQ through the increased use of desiccant dehumidification
- Economic benefits through improved GRID reliability (I.e. reduced peak time blackouts)
- BCHP is a classic case where government catalyst is essential as individual companies could not succeed.

Action Plans

- WEBsite promotion and BCHP information distribution: BCHP.org
- 3-year strategic plan development
- Expand partnering opportunities
- Design Assessment Tools Creation
- Encourage Packaged Systems Development (U of M Test Building)
- Establish Regional Application Centers
- Outreach education programs for architect, engineering and building owner/operator education

• WHEN YOU COME TO A FORK IN THE ROAD, TAKE IT!

O Yogi Berra